a2 United States Patent

US009448975B2

10) Patent No.: US 9,448,975 B2

Takatsuka et al. 45) Date of Patent: Sep. 20, 2016
(54) CHARACTER DATA PROCESSING (56) References Cited
METHOD, INFORMATION PROCESSING
METHOD, AND INFORMATION U.S. PATENT DOCUMENTS
PROCESSING APPARATUS o
8,302,001 B2* 10/2012 MitSui .c..cooevvvvenennee GO6F 17/211
H . i _ohi 705/51
(71) Applicant: FUJITSU LIMITED, Kawasaki-shi, 2004/0268256 Al 12/2004 Furuta ef al.
Kanagawa (JP)
(72) Inventors: Masaki Takatsuka, Mishima (IP); FOREIGN PATENT DOCUMENTS
Masahiro Takeda, Kawasaki (JP) P 07-192013 7/1995
. . Jp 2004-252944 9/2004
(73) Assignee: FUJITSU LIMITED, Kawasaki (JP) P 2010-009532 1/2010
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35] o o
U.S.C. 154(b) by 0 days. UNICODE, Translation of http://ja.wikipedia.org/wiki/Unicode as
of Feb. 23, 2013, pp. 1-19 (43 pages, including partial English
(21) Appl. No.: 14/467,401 translation).
(22) Filed: Aug. 25, 2014 * cited by examiner
(65) Prior Publication Data Primary Examiner — Anh Do
US 2015/0055868 Al Feb. 26, 2015 (74) Attorney, Agent, or Firm — Fujitsu Patent Center
(30) Foreign Application Priority Data (57) ABSTRACT
Aug. 26,2013 (JP) oo 2013-174800 A character data processing method executed by a computer
includes detecting glyph variant information from an input
(51) Int. CL character data string, and converting detected glyph variant
GO6K 9/18 (2006.01) information to extended expression data, the extended data
GOG6F 17/22 (2006.01) and the detected glyph variant information, the basic char-
(52) US.CL acter data being associated with the detected glyph variant
CPC oo GO6F 17/2223 (2013.01) information in the input character string, wherein the
(58) Field of Classification Search extended expression data can be converted to the basic
USPC oo 382/185, 181, 203; 705/51, 57; character data by specific bit arithmetic processing.

715/234, 255
See application file for complete search history.

7 Claims, 10 Drawing Sheets

40
w’
08 LAYER APPLICATION/MIDDLEWARE LAYER ; 0S LAYER
1] i
10 APPLIGATION 0
UTFB CHARACTERS | 1 iconverston| MXER 1 congversion { UTES CHARAGTERS
UTF16 CHARACTERS | apparaTus | ENGTH JppspaTus e
; X UTE16 CHARACTERS
FORMAT

k4

M“Né DISTRIBUTE AT INTERNAL FORMAT (X FORMAT)

UTFS CHARACTERS |
, CONVERSION
UTF16 CHARACTERS | " | APPARATUS

10 MIBDLEWARE

110

EIXED CONVERSION

- UTF8 CHARACTERS
LENGTH | APPARATUS ;

UTF16 CHARACTERS

US 9,448,975 B2

Sheet 1 of 10

Sep. 20, 2016

U.S. Patent

SHALIVEYHD BLALN

SHILOVHYHD 8410 %ii

’ o
X .
P

g

IYMIIOOWN 5,

SNLvHYddy | HLONIT | enivuvddy
NOISHIANDD 33X I NOISHIANDD

I

3

i

o,

S LOVHYHD 81410
SHILOVHYHD 8410

HIAY1 80

(LYWROL X0 LYOd TTWRNYZINT LY 3AN8RILSI]

SNLYHYddY

om\}\a

NOISHIANCD

LYRHO

X
BN SNLYHYddY

e e NOISHIANGCD

A SHILOVHYHD BLdLN

o

1

¢
¢
M
‘

k:

NOLLYOPIddY o1

AV BRYMITAOIN/NOLLY O TddY

/

(/54

H

B3 LOVHYHD 841N

SHILOVHYHO 81410
SHILOVHYHD 8410

HIAYT B0

US 9,448,975 B2

Sheet 2 of 10

Sep. 20, 2016

U.S. Patent

e

FiG 25

U.S. Patent Sep. 20, 2016 Sheet 3 of 10 US 9,448,975 B2

FiG 3
90
91
.. 04
92 Py
. COMMUNICAT TON
y UNIT 95
03 | MAIN MEMORY g
5,
S | INPUT INIT | gg
SECONDARY e
HEHORY — {
QUTPUT UNIT
.
INFORMAT ION PROCESSING APPARATUS

U.S. Patent Sep. 20, 2016 Sheet 4 of 10 US 9,448,975 B2

FiG 4
a0
¢
INPUT/GUTPUT AREA TREATED AS DATA
WITH IVS 08 OPERATE IN FIXED LENGTH
CLAYER |
7 DATA umv 95 t
(SCREEN INPUT)) W 1
i o
; - S
96 COMVERT | 7
i}m ouTPUTS ; LI
(E}ESPLAY) : FIXED e
<‘;:; : LEE?;E?H w893
ATA OUTPUT : | P
P | e |
e 10

U.S. Patent Sep. 20, 2016 Sheet 5 of 10

US 9,448,975 B2

FIGE 54
=l . GROUP : 00~TF
O GROUP T PLANE ROW GELL) PLANE - 00~FF
o x) ‘ . RQW : GQNFF
8BITS BBITS BBITS ggrys CRLL: 00~FF
Fig 55
(UPPER) (LOWER)
32B1TS
VSn-1) UCs4
8BITS 21BITS
FIG 5C
(UPPER) 398178 (LOWER)
UCs4 (¥8n-1)
21BITS 8BITS

U.S. Patent Sep. 20, 2016

Sheet 6 of 10

US 9,448,975 B2

| GONVERT VALIABLE LENGTH DATA T0 FIXED LENGTH DATA| £75 &
(stRT)
e
CONVERT INPUTTED DATA TO UTF32
TO STORE INPUT OPERATION BUFFER || o1y
(HEREINAFTER. READ FROM e
INPUT OPERATION BUFFER)
et
READ FIRST CHARAGTER 512
(TO CHARACTER PROCESSING BUFFER A)
S
< FENESHti}’? ‘fl‘::: 1ES (=£00)
Y
“ﬂgﬁfaﬁ;‘fcz?%mw MV
\\\ T
R YE$ ZEx. Ussdsp
- {(=B0 ;
READ SECOND CHARAGTER L
(T0_CHARACTER PROCESSING BUFFER B) | g{&
v\‘"’““\‘“‘i\ Siﬁ
<< FINISHED? T, YRS SH
e OUTPUT FIXED LENGTH
NG 518 GMA (FRQ&E BUFFER A)
822 ?‘éﬁ (:BG} “““,,,w"“"“# | N, \ . EX \\\\\\\\\\\\\\\\\\\
GUTRUT EIXED TENGTH T + =VS1D
DATA (FROM BUFFER A) YES (=V8) . ._?iéf?é@?%EEWS??ﬁ? L
COPY BUFFER 870 : ;;Exgm {} ?N@% R
75 BUFFER B OO0 (VST
(INITIALL % FFERB)| | QI R, |
§1g . TO VSn EX : COMBINE Ox10
WITH U+845B
% 0% 10008458 :
COMBINE BASTC CHARR™ e
$pg. | CTER WITH (VS TO
" GENERATE FIXED LENGTH || ~APPROPRIATELY
DATA (AT BUFFER A) || INTIALIZE BUFFER A
{ COUNTER. AKD APPROPR!
S21f SITPUL LD T | ATELY PERFORM INITIA-
/ LIZATION AND ADDITION

U.S. Patent

Sep. 20, 2016 Sheet 7 of 10 US 9,448,975 B2

CONVERT FIXED LENGTH DATA INTO VALIABLE LENGTH DATA | &7 /7

{ START)

Mwwv

&

~REKYONE CHRACTER, FiOi 831
FIXED LENGTH DATA [
(T0 BUFFER W)

X 832

< FINISHED? ™ YES EOD) 533
S, T ¥ :
g™ CONVERT DATA IN GHTPUT
NO OPERATION BUFFER TO
UTF8/UTF16 TO STORE IV
IN QUTPUT BUFFER
(WHEN THERE IS DATA)
g~w~m”§m‘*‘ o
s3a (B
¥ ol

TAKE OUT BASIC CHARACTER | (EX. . BUFFER W :
AS FIRST CHARACTER ¢« AND OxQOFfffff :
(T0 BUFFER A) . —BUFFER A
i T L B SR
oapr | TAKE OUT DATA FROM 1§ EX : BUFFER W :
S35 -1 VARTATION SELECTOR . AND Ox 1000000
FIELD (TO BUFFER VSm){: —BUFFER VSn
}}}}}}} T trr o O ¥ e
. OUTPUT FIXED LENGTH NOTE: !

3B o CHARACTER OF FIRSY VSn=0x0: NO VARIANT

CHARACTER (FROM BUFFER A) 1iysn NOT=0x0:

THERE ES A VAREA?‘@T
N -

18 THERE ~“~.

N . Xs‘&&iATEQN SEE_EC?&:%\E? ‘\\

. (DATA IS IN BUFFER . e
‘NNN“ vgﬂﬁ) e

‘gm
CONVERT V8n TO | \EX. (BUFFER VSn>>24 bit)+!
838 .~ CHARACTER (10 - U+EOID0—BUFFER B |
BUFFER B) | *
¥ -APPROPRIATELY
g | OUTPUT FIXED LENGTH | | INTIALIZE BUFFER A
DATA (FROM BUFFER B) | | -ARRANGE CHARACTER

; COUNTER AND APPROPRI-

ATELY PERFORM INITIA-
LIZATION AND ADDITION

US 9,448,975 B2

Sheet 8 of 10

Sep. 20, 2016

U.S. Patent

JRYN-HIROLEND AV IS

! S LM YN
xwmmmm«mmwmm CAGID/ INAND TUYREA0S HTHI0 HITH NOIIVHIL000
YV ¥iV0 o daova TTYE-T114 330D
HIDNGT d3x1d NOT 1YISHYNL GYOOT-STVS LT
R
s 1 A TEYN-HIN0ISND OL TWVR-NI JACH
S53004d CIWS-T1d LNdIND N340
B SR A0 NOLLYISNVML . BHIST v
JAYN-NT 1dT00Y

SEI00Md 1NdNT YIVE TWRHLXS
VIV SIS (O O VR RIS AN HISEDON: BN
i “(SLIN Bid JEYN-UIMNIENG 20

T i i MODIE-STHS 10
LYI¥0 HIDNIT a3X14 R v A SIWS-d1id 44
VR TIVINA o NOLLINTZ30 GH00T 314
* ERLE LT e TSI OF NDISSY THS-TH4 10318
NN, e KOILINI43G 3114
YiVG H1oMd] GiXldi=t T YA WA WILING QLN Oid JW-RT 10
ATA TILIN e THNRILON WA (DN 91d TULL-AYIISIC 10
o1 L T
YOO 103090 T (4107940 T D00 DHES

008 908" 208" j
. HIDHTT QY dem— QUHRN IS THVIRA 0 MOIIH NOISEANDD SHETR) S0 1
e Bid -

U.S. Patent

85

f‘“iﬁé‘&i?‘i@ﬁ‘a‘?“)

*UTF8
ix JUTF16

Sep. 20, 2016

Sheet 9 of 10

US 9,448,975 B2

| |
93

AR :“\\

A . \\

. o
UV

FiE

FiG 88
80c 80d
SALI0THN (OBJECT PROGRAM) CHPILER PERATON SYSTEH
FIXED LENGTH DATA COMERS LN
EXTERAAL DATA TAPIY PROCESS (VARIABLE—
ACCEPT IN-NAME ™ FIXED)

10

!

04T ROUEES TR PROCES

OPEN QUTPUT FILE-SALES

MOVE IN-NAME TO

SREULA TL CUSTOMER-NANE Il
FIED LEH WRITE SALES-REGORD
e CLOSE FILE-SALES
COOPERATION PROGESS
ORI e =1 WITH OTHER SOFTWARE [1")
56 (INPUT/QUTPUT)

SRS
’ Tre
_/UTF16

BATA GUTPYT PROCESS

DISPLAY CUSTOMER-NAME

FIXED LENGTH
DATA AREA
(PROCESSES
BASED ON
FIXED LENGTH
DATA)

I

GONVERSION
APPARATUS
(FIXED —
VARIABLE)

U.S. Patent

Sep. 20, 2016

FiG 9

Sheet 10 of 10

US 9,448,975 B2

[CASE THAT JPPLIGATHN DEVEROPER USES CORVERSION FRCTIOH

RLIOToN 80
.......... 8
DI 10
AT EHL 7 T S z
£ TS) Fp=stdin: CONVERSION
UTF18 - Fread (&buffer, size, APPARATUS
o Ly fength, fp) : (VALTABLE LENGTH
CONVERTER FUNCT IO bl -> FIXED LENGTH)
(g?Uffgrb £
{Xg L& er;i
e e] T Wl ~ _Bod
BASIARSS L0600
DESIEH RASED O FLIED LEMSTH DATA —_
CODPERATION PROCESS IPERATION STk
| OTHER | laglblped WITH OTHER SOFTWARE
SOFTWARE (INPUT/OUTPUT)
EXTERNAL DATA
;“Ej%}{ QUTPUT PROCESS 10
u{ggw“\} CGN%%?FERngﬁggiﬁw o
/ » ixed_buffer, g e
uIrie &rgustomer_name} : gggg%giégg
print
("eustomer name %s ¥n©, Eiiéggikgfgm
fcustomer name):. LENGTH)

US 9,448,975 B2

1
CHARACTER DATA PROCESSING
METHOD, INFORMATION PROCESSING
METHOD, AND INFORMATION
PROCESSING APPARATUS

CROSS-REFERENCE TO RELATED
APPLICATION

This application is based upon and claims the benefit of
priority of the prior Japanese Patent Application No. 2013-
174800, filed on Aug. 26, 2013, the entire contents of which
are incorporated herein by reference.

FIELD

Disclosure relates to a character data processing method,
an information processing method, and an information pro-
cessing apparatus.

BACKGROUND

Conventionally, in regard to consideration of character
codes, a correspondence between an area length (for
example, the number of bytes) of character data and a size
of field in a display screen, a form, or the like is determined
at a pattern. For example, alphabets, numbers, and katakana
without voiced sound symbol are expressed by an area
length of one half-sized byte. Japanese characters are
expressed by an area length of two full-sized bytes. Kata-
kana with voiced sound symbol is indicated by an area
length of two half-sized bytes (one byte+one byte=two
bytes). These area lengths coincide with the size of field in
the display screen, the form, or the like. In this way, in a
business application that treats characters, the size of field in
the form and the size of character data treated in the
application are declared to adjust the size of the area of the
field and a display size of the character data. Therefore, a
developer or the like of the business application that treats
characters develops the business software without regard to
the adjustment between the display size of the character data
and the size of the field where the character data is outputted.

Meanwhile, Unicode (UTF16) has appeared as a character
code that can treat all characters defined in JIS 2004, and an
environment of handling one Japanese character in area
lengths of two bytes and four bytes is started to be widely
used. In the environment using UTF16, the developer or the
like of the business application that treats the characters also
can use UTF32 for encoding of input character data to
design character data treated in area lengths of two bytes and
four bytes in a fixed length of four bytes per character.

For more information, see “Unicode,” [searched on Feb.
5, 2013], Internet, <URL:https://ja.wikipedia.org/wiki/Uni-
code>

SUMMARY

In recent years, a technique called a “variation selector”
that provide identification information, such as VSI,
VS2, ..., to Unicode of a character becoming a base to
allow uniformly treating variant(s) (i-tai-ji) of a target char-
acter is started to be widely used (for example, Windows 8
(registered trademark) supports variants). The use of the
variation selector can identify and express variants, such as,
for example, Chinese characters of ¥
and %
that exist in Japanese characters.

10

15

20

25

30

35

40

45

50

55

60

65

2

As the identification information attached to the character
data becoming the base for identifying a variant, a UTF16
code having four bytes is allocated to the character. There-
fore, the area length of character data with the variation
selector is expressed by a variable length of'six to eight bytes
in UTF16. Hereinafter, the character data becoming a base
in the variation selector is called “a basic character data.”

For example, the developer of the system treating the
variation selectors treats one character data of Japanese
character as a variable area length of the UTF16 (no glyph
variant information: two to four bytes, with glyph variant
information: six to eight bytes) to design the business
application. However, in the conventional design environ-
ment, the correspondence between the number of characters
and the data length is fixed. Hence, the number of characters
of a name column or the like of a screen or a form is fixed
in most cases, and the size of the corresponding data is also
the size corresponding to the number of characters. The
developer of the system for handling the variation selectors
treats character codes, each of which has a variable length,
to manage both of the number of characters and the area
length. Therefore, management burden to the developer
increases. For example, every time the developer takes out
characters from a database, the developer counts the number
of characters to perform an error check of whether the target
characters fit in the field of the screen or the form that
outputs the target characters, and the load of operation
increases.

One of aspects of embodiments is a character data pro-
cessing method executed by a computer. The method
includes:

detecting glyph variant information from an input char-
acter data string; and

converting detected glyph variant information to extended
expression data, the extended data and the detected glyph
variant information, the basic character data being associ-
ated with the detected glyph variant information in the input
character string,

wherein the extended expression data can be converted to
the basic character data by specific bit arithmetic processing.

The object and advantages of the invention will be
realized and attained by means of the elements and combi-
nations particularly pointed out in the claims.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the inven-
tion, as claimed.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a diagram explaining a conversion apparatus of
the present embodiment;

FIG. 2A is a diagram indicating an example of variants of
“F (ashi)™;

FIG. 2B is a diagram indicating an example of a sentence
using a plurality of variants of “#& (ashi)”;

FIG. 3 is a diagram illustrating a hardware configuration
of an information processing apparatus;

FIG. 4 is a diagram explaining a function of the conver-
sion apparatus of the present embodiment;

FIG. 5A is a diagram indicating a character code standard
standardized by ISO;

FIG. 5B is a diagram indicating an example of fixed-
length data converted in a conversion process of the present
embodiment;

US 9,448,975 B2

3

FIG. 5C is a diagram indicating an example of fixed-
length data converted in a conversion process of the present
embodiment;

FIG. 6 is a flow chart illustrating a conversion process of
the present embodiment;

FIG. 7 is a flow chart illustrating a conversion process of
the present embodiment;

FIG. 8A is a diagram explaining operation of a case in
which the conversion apparatus of the present embodiment
is incorporated into a compiler;

FIG. 8B is a diagram explaining operation of a case in
which the conversion apparatus of the present embodiment
is incorporated into a compiler; and

FIG. 9 is a diagram explaining operation of a case in
which the conversion apparatus of the present embodiment
is incorporated into middleware.

DESCRIPTION OF EMBODIMENTS

Hereinafter, a conversion apparatus according to an
embodiment will be described with reference to the draw-
ings. The following configuration of the embodiment is
illustrative, and the conversion apparatus is not limited to the
configuration of the embodiment.

Hereinafter, the conversion apparatus will be described
based on FIGS. 1 to 9.

First Embodiment

FIG. 1 illustrates an explanatory view of the conversion
apparatus of the present embodiment. The conversion appa-
ratus of the present embodiment is implemented by, for
example, an information processing apparatus, such as a
server and a computer, for developing a business application
treating characters (character data). The conversion appara-
tus of the present embodiment can treat a variable-length
Unicode character with a variation selector as a fixed-length
area length in an application and middleware executed by
the information processing apparatus.

First, variants and a variation selector of the background
will be described.

Variants which a variation selector is attached will be
described with reference to FIGS. 2A and 2B. FIG. 2A is an
example of variants of “# (ashi)” in a simplified form. A
variant is a character having a character form differing from
a character having a standard character form (for example,
a simplified form). In other words, a variant is a character
having two or more expressions (character forms), each of
which has the same word origin. As illustrated in FIG. 2A,
a character of “# (ashi)” expressed by the simplified form
(see No. 3) includes three variants (see No. 1, 2 and 4). A
character code (Unicode) of “# (ashi)” expressed by the
simplified form is indicated by “0x82a6”. Here, “Ox###”
indicates a hexadecimal notation, and “#” indicates hexa-
decimal “0” to “F”.

When the variation selector is used, the four variants (the
character expressed by the simplified form is treated as one
of variants) illustrated in FIG. 2A are treated as “character
data/character data set” obtained by adding four-byte iden-
tification information (identifier) to a basic character data
(namely, a character data becoming a base of variants) in
order to express each of the variants.

When the variation selectors are used, one of characters
forming the variants is defined as a basic character. In the
example of FIG. 2A, the basic character is the character
“7 (ashi)” expressed by the simplified form (No. 3). In this
case, the character code of the basic character is “0x82a6”.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

Hence, the variants of “ashi” can be expressed by the
following “character data/character data set”.

(1) A character form of No. 1 in FIG. 2A:
(0x82a6 0x000e0111)

(2) A character form of No. 2 in FIG. 2A:
(0x82a6 0x000e0112)

(3) A character form of No. 3 in FIG. 2A:
(0x82a6 0x000e0113)

(4) A character form of No. 4 in FIG. 2A:
(0x82a6 0x000e0114)

Where each of “VS177, “VS18”, “VS19”, and “VS20”
added to the basic character code indicates an identifier used
at the variation selector. The identifier is one of examples of
“identification information”. Thus, when the variation selec-
tor is used, each variant is expressed by “a character code of
the basic character”+“an identifier”.

“0x000e0111” of (1) indicates, for example, a hexadeci-
mal code corresponding to the identifier “VS17”. Similarly,
“0x000e0112” of (2) indicates a hexadecimal code of the
identifier “VS18”, “0x000e0113” of (3) indicates a hexa-
decimal code of the identifier “VS19”, and “0x000e0114” of
(4) indicates a hexadecimal code of the identifier “VS20”.
When the variation selector is used, each variant can be
treated as the “character data/character data set” including
the basic character data and the identifier. Therefore, the
character data can be uniformly and systematically treated
compared to the conventional system for separately allocat-
ing different character codes to the variants.

The developer or the like of the application that treats
characters can use the variation selectors and the character
codes illustrated in FIG. 2A to express a sentence with a
combination of a plurality of variants as illustrated for
example in FIG. 2B. A range of “VS17” to “VS256” is
allocated to the variation selectors. The identifiers of
“VS817” to “VS20” is prepared for the variants of “#* (ashi)”
illustrated in FIG. 2A. However, identifiers for expressing
variants are not prepared with respect to characters which
have no variants (e.g., a character of “# (ai)”) have no
variants. Hence, this example character “(ai)” is expressed
by a character code “0x88a4” in the expression of the
“character data/character data set” using the variation selec-
tor. Therefore, the area length of the character which has no
variants is a 2-byte area length expressed by UTF16.

On the other hand, in the case of “# (ashi)” illustrated in
FIG. 2A, each of the variants is expressed by “character code
of basic character”+“variation selector”. Therefore, the area
length of the character data of “# (ashi)” with a variant is six
bytes in total which is a sum of a two-byte “character code”
and a four-byte “variation selector”. Further, characters
defined in JIS 2004 include characters of a new character
form expressed by a four-byte character code (it is called
“four-byte characters,” for example, a character of “#).
When a four-byte character has the variant(s), the character
data of the four-byte character has an eight-byte area length
(four-byte basic character code+identifier (variant selector)).

The developer or the like of the business application that
treats the variation selector sets the character code of each
character to a variable length to manage both of the number
of characters and the area length. Therefore, the manage-
ment burden in the development and design increases.

Returning to the explanatory view illustrated in FIG. 1, a
program for which an information processing apparatus(es)
(a computer(s)) operates the conversion apparatus 10 of the
present embodiment is incorporated into a business appli-
cation or middleware that treats existing characters. In the
explanatory view illustrated in FIG. 1, the variable-length
Unicode characters (UTF8, UTF16) with the variation selec-

+VS17

+VS18

F +VS19

+VS20

US 9,448,975 B2

5

tor are input through, for example, an input device or the like
included in an information processing apparatus that oper-
ates as the conversion apparatus 10. The variable-length
character data including the variation selectors is delivered
to the business application that treats the existing characters
through, for example, an Operating System (OS) included in
the information processing apparatus. The conversion appa-
ratus 10 converts the delivered variable-length character
data to fixed-length data having a predetermined length or to
an internal format (X format) in a program. According to the
conversion apparatus 10 of the present embodiment can treat
the character data converted to the fixed-length data of a
predetermined length as a processing format similar to the
conventional format.

Further, the fixed-length character data obtained by the
conversion apparatus 10 of the present embodiment is
converted again to variable-length character data through the
conversion apparatus 10. The variable-length character data
converted by the program of the conversion apparatus 10
includes the variation selector, and the variable-length char-
acter data is given to the OS to display or output a character
based on the variable-length character data on a display
device or the like included in the information processing
apparatus.

In the business application, the fixed-length character data
converted to a processing format (internal format) in the
program by the conversion apparatus 10 of the present
embodiment is delivered to middleware or the like in the
fixed-length state. The variable-length character data deliv-
ered to the middleware through the OS is delivered to the
program of the conversion apparatus 10 incorporated into
the middleware.

The program of conversion apparatus 10 incorporated into
the middleware converts the delivered variable-length char-
acter data to fixed-length character data of a predetermined
length. To the fixed-length character data of the predeter-
mined length converted through the program of the conver-
sion apparatus 10 or the data in the internal format delivered
to the middleware, a predetermined process is performed in
a state that the data area length is maintained. The fixed-
length character data illustrated in FIG. 1 is converted again
to the variable-length character data through, for example,
the program of the conversion apparatus 10 in the middle-
ware. The variable-length character data converted by the
program of the conversion apparatus 10 includes the varia-
tion selector, and the variable-length character data is given
to the OS to display or output a character based on the
variable-length character data on a display device or the like
included in the information processing apparatus.

The conversion apparatus 10 of the present embodiment
allows the developer or the like of the application that treats
the variation selectors to perform the development operation
without regard to the area length of the character code.
Therefore, the developer or the like of the application can
reduce the management burden of the character code. As a
result, the productivity for developing the application that
treats the characters can be improved.

For example, the conversion apparatus 10 of the present
embodiment is implemented on an information processing
apparatus 90 as a computer illustrated in FIG. 3. FIG. 3
illustrates a configuration of hardware of the information
processing apparatus 90. The illustrated information pro-
cessing apparatus 90 includes a Central Processing Unit
(CPU) 91, a main storage unit (main memory) 92, an
auxiliary storage unit (external memory) 93, a communica-
tion unit 94, an input unit 95, and an output unit 96 that are
connected to each other by a connection bus B1.

10

15

20

25

30

35

40

45

50

55

60

65

6

In the information processing unit 90, the CPU 91
expands a program stored in the auxiliary storage unit 93 to
allow execution in a work area of the main storage unit 92,
and the information processing apparatus 90 controls a
peripheral device through the execution of the program. As
a result, the information processing apparatus 90 can per-
form operations corresponding to a predetermined object.
The main storage unit 92 and the auxiliary storage unit 93
are recording media that can be read by the information
processing apparatus 90 as a computer.

The CPU 91 is a central processing unit that controls the
entire information processing apparatus 90. The CPU 91
executes processes according to a program stored in the
auxiliary storage unit 93. The main storage unit 92 is a
storage medium for the CPU 91 to cache a program or data
or to expand the operation area. The main storage unit 92
includes, for example, a Random Access Memory (RAM)
and a Read Only Memory (ROM).

The auxiliary storage unit 93 stores various programs and
various data in a recording medium in a manner that they can
be freely read and written. The auxiliary storage unit 93 is
also called an external storage device. An operation system
(OS), various programs, various tables, and the like are
stored in the auxiliary storage unit 93. The OS includes a
communication interface program for transferring data with
an external device or the like connected through the com-
munication unit 94. Examples of the external device or the
like include another information processing apparatus and
an external storage device connected through a network or
the like. The auxiliary storage unit 93 may be, for example,
part of a cloud that is a group of computers on a network.

The auxiliary storage unit 93 is, for example, an Erasable
Programmable ROM (EPROM), a solid-state drive (SSD)
apparatus, a hard disk drive (HDD) apparatus, or the like. A
Compact Disc (CD) drive apparatus, a Digital Versatile Disc
(DVD) drive apparatus, a Blu-ray Disc (BD) drive appara-
tus, and the like can be presented as examples of the
auxiliary storage unit 93. Examples of the recording medium
include a silicon disk including a non-volatile semiconduc-
tor memory (flash memory), a hard disk, a CD, a DVD, a
BD, a Universal Serial Bus (USB) memory, and the like. The
communication unit 94 is, for example, an interface circuit
with a network or the like.

The input unit 95 receives an operation instruction or the
like from a user or the like. The input unit 95 is an input
device, such as an input button, a keyboard, a pointing
device, a wireless remote control, a microphone, and a
camera. Information input from the input unit 95 is sent to
the CPU 91 through the connection bus B1.

The output unit 96 outputs data processed by the CPU 91
and data stored in the main storage unit 92. The output unit
96 is an output device, such as a Cathode Ray Tube (CRT)
display, a Liquid Crystal Display (LCD), a Plasma Display
Panel (PDP), an Electroluminescence (EL) panel, and a
printer.

In the information processing apparatus 90 illustrated in
FIG. 3, the CPU 91 reads out the OS, various programs, and
various data stored in the auxiliary storage unit 93 to the
main storage unit 92 and executes these programs. By the
execution of the programs, the information processing appa-
ratus 90 operates as the conversion apparatus 10.

Functional Configuration

FIG. 4 illustrates an explanatory view explaining a func-
tion of the conversion apparatus 10 of the present embodi-
ment. In the conversion apparatus 10 of the present embodi-
ment, a conversion process from a variable-length character
code to a fixed-length character code is incorporated into an

US 9,448,975 B2

7

upstream for calling out an OS function and Application
Programming Interfaces (API), and the conversion process
from a variable length to a fixed length is executed. The
upstream denotes, for example, the side closer to the middle-
ware or the application program relative to the OS.

In the explanatory view illustrated in FIG. 4, the devel-
oper or the like (hereinafter, called “developer”) of the
business application that treats characters creates a character
input unit through, for example, the input unit 95 or the like
included in the information processing apparatus 30 that
implements the conversion apparatus 10. The information
processing apparatus 90 has an input and output function
corresponding to Ideographic Variation Sequence (IVS) that
can use the variation selector. In the IVS, the variation
selector is added just after the character codes (Unicode;
UTF8, UTF16, UTF32) of the basic character to express the
variant. As described in FIG. 1, the character code of the
basic character has a variable length of two to four bytes, and
the variation selector has a four-byte length. The area length
of the character data inputted through the input unit 95
corresponding to the IVS is a variable length of two to eight
bytes (including cases of characters without variants).

The conversion apparatus 10 of the present embodiment
converts the inputted variable-length character data to the
fixed-length character data prior to deliver the character data
to the application called by the OS function and/or the API
or the middleware. The application or the middleware
receiving the fixed-length character data refers to, for
example, a database or the like on the auxiliary storage unit
93 to execute a predetermined process based on the deliv-
ered fixed-length character data.

Meanwhile, the conversion apparatus 10 of the present
embodiment converts the fixed-length character data pro-
cessed by the application or the middleware to the variable-
length character data prior to deliver the character data to the
OS function, the API, or the like. The converted character
data is output to the output unit 96 included in the informa-
tion processing apparatus 90 operating the conversion appa-
ratus 10 via the OS or the like. The output unit 96 corre-
sponding to the IVS, such as a display screen of CRT or the
like, can display a sentence or the like including a plurality
of variants illustrated in FIG. 2B.

(Conversion Process)

Next, a conversion process of converting variable-length
character data to fixed-length character data in the conver-
sion apparatus 10 of the present embodiment will be
described with reference to FIGS. 5A to 5C. FIG. 5A
illustrates, as an example of character code standard, ISO/
IEC 10646 (Universal Coded Character Set (UCS)) stan-
dardized by International Organization for Standardization
(ISO). The character code (Unicode) of the basic character
as a target of the conversion apparatus 10 of the present
embodiment is part of the character code standard illustrated
in FIG. 5A.

As illustrated in FIG. 5A, one character of the basic
character is expressed by four bytes (32 bits) in ISO/IEC
10646, and the character is divided into four “octets” includ-
ing a “group”, a “plane”, a “row”, and a “cell” in order from
high-order bits. As illustrated in FIG. 5A, since the highest-
order bit of the “group” is fixed to “0”, there are 128
(groups)x256 (planes)x256 (rows)x256 (cells) character
codes that can be expressed by ISO/IEC 10646, and more
than 2.1 billion characters can be identified. The four-byte
expression format illustrated in FIG. 5A is also called UCS4.

The character code UTF32 expresses 1114112 characters
that are subsets of UCS4 and all characters defined by JIS
2004 that are subsets of UTF32. Consequently, the charac-

10

15

20

25

30

35

40

45

55

60

65

8

ters expressed by UTF32 are expressed in a character range
of “0x00000000” to “Ox0010ffff” in UCS4. Therefore,
UCS4 can express UTF32 by an amount of information of
(5 bits for identifying 17 planes from O-th plane to 16-th
plane)+(16 bits that are character code of 2 bytes included in
each plane)=21 bits.

Variation selectors corresponding to Japanese kanji (Chi-
nese characters) are prepared in a range of “VS17” to
“VS8256”, and one basic character can have up to 240
variation selectors. Therefore, the identification of a variant
of a basic character can be made by an amount of informa-
tion of eight bits.

The conversion apparatus 10 of the present embodiment
generates fixed-length data expressed by an amount of
information of, for example, four bytes (32 bits) from the
information of 21 bits for expressing the character code and
the information of eight bits for expressing the variant. The
four-byte fixed-length data generated by the conversion
apparatus 10 includes information of the character code of
the basic character and the variation selector of the basic
character.

The conversion apparatus 10 of the present embodiment
extracts the information of 21 bits expressing the character
code and the information of eight bits expressing the variant
from the fixed-length data expressed by the amount of
information of four bytes (32 bits) to generate variable-
length character data. The variable-length character data
generated by the conversion apparatus 10 is data having two
to eight bytes including the character code of the basic
character and the variation selector attached to the character
code of the basic character.

The conversion apparatus 10 of the present embodiment
generates the fixed-length data including the information of
21 bits expressing the character code and the information of
eight bits expressing the variant by the following two
processing systems (methods). In the description, it is
assumed that the fixed-length data generated by the conver-
sion apparatus 10 includes four bytes (32 bits). The variation
selector number, such as “xxx” of “VSxxx (xxx is 17 to
256)”, of the variation selector will be described as “n”.

It can be stated that the expression format of the conver-
sion apparatus 10 of the present embodiment is, for example,
an extended expression that the basic character expressed by
Unicode (UTF8, UTF16, UTF32) and the information
expressing the variant of the basic character (for example,
variation selector) are expressed by a fixed-length format
having a predetermined length (for example, length of 32
bits). More specifically, as described in FIGS. 2A, 2B, and
the like, when “character code of basic character”+“varia-
tion selector” is a standard expression, the variable-length
character data expressed by the standard expression has a
length of two to eight byte length (including a mode in
which the basic character does not include variants). In the
expression format of the conversion apparatus 10 of the
present embodiment, the basic character is expressed by an
amount of information of 21 bits. When there is a variant, the
information of eight bits expressing the variant and the
information of the basic character are integrated into data
having a predetermined length to express the data as fixed-
length data, as described above.

In the first embodiment, the format that includes a “char-
acter code of basic character”+a “variation selector” and a
“character code of basic character” without variation selec-
tor and that is expressed by, for example, 32-bit fixed length
is called an extended expression. The conversion apparatus
10 of the present embodiment determines whether an input
character data string includes glyph variant information.

US 9,448,975 B2

9

When the glyph variant information is detected from the
input character data string, the conversion apparatus 10
converts the glyph variant information to extended expres-
sion data that includes the basic character associated with
the glyph variant information and the glyph variant infor-
mation and that can be converted to the basic character by
specific bit arithmetic processing.

(Method 1)

In a method 1, the conversion apparatus 10 calculates a
logical sum of the basic character expressed by the four-byte
UTF32 code format illustrated in FIG. 5A and 32-bit data
which is obtained by subtracting 1 from the variation
selector number n and shifting the value (n-1) to the right by
24 bits. As a result, the conversion apparatus 10 can generate
fixed-length data including 21-bit information to express the
character code and eight-bit information to express the
variant.

FIG. 5B illustrates one example of four-byte fixed-length
data generated in the process of the system 1. In the example
of FIG. 5B, (n-1), which is a value obtained by subtracting
1 from the variation selector number n, is stored in an area
of eight high-order bits of 32-bit data. In the example of FIG.
5B, the basic character expressed by the UTF32 code format
is stored in an area of 21 low-order bits of the 32-bit data.

In this way, in the extended expression format of the
method 1, the variable-length character data of the standard
expression can be integrated and expressed by the extended
expression of 32-bit fixed length including the information
of the variant in the area of eight high-order bits and the
information of the basic character in the area of 21 low-order
bits. Therefore, the character data of “character code of basic
character”+“variation selector” illustrated in FIGS. 2A and
2B can be treated in the data format of the extended
expression having a predetermined length.

When, for example, the character does not include a
variation selector, the fixed-length data generated in the
system 1 becomes the basic character expressed by the
UTF32 code format. Furthermore, for example, the conver-
sion apparatus 10 can ignore the eight high-order bits by
calculating the logical sum of the generated fixed-length
data and the four-byte data of “OxOO0ffffff”. Therefore, the
expression of the UTF32 code of the basic character can be
easily obtained.

(Method 2)

In a method 2, the conversion apparatus 10 calculates a
logical sum of 32-bit data, which is obtained by subtracting
1 from the variation selector number n and storing the value
(n-1) in eight low-order bits, and data, which is obtained by
shifting the basic character expressed by four-byte UTF32
code format eight bits to the right. As a result, the conversion
apparatus 10 can generate fixed-length data including 21-bit
information expressing the character code and eight-bit
information expressing the variant.

FIG. 5C illustrates four-byte fixed-length data generated
in the process of the system 2. In the example of FIG. 5C,
(n-1), which is a value obtained by subtracting 1 from the
variation selector number n, is stored in an area of eight
low-order bits of 32-bit data. In the example of FIG. 5C, the
basic character expressed by the UTF32 code format is
stored in an area of 21 low-order bits adjacent to the
high-order side of an area of eight low-order bits.

Thus, in the extended expression format of the method 2,
the variable-length character data of the standard expression
can be expressed by the extended expression having a fixed
length (32 bit). The extended expression includes the infor-
mation of the variant which is in the area of the eight
low-order bits and the information of the basic character

10

15

20

25

30

35

40

45

50

55

60

65

10

which is in the area of 21 bits adjacent to the high-order side
of the area of the eight low-order bits. As in the method 1,
the character data of the “character code of the basic
character”+the “variation selector” illustrated in FIGS. 2A
and 2B can be treated with the data format of the extended
expression having a predetermined length.

In the fixed-length data generated in the method 2, for
example, the data format of the character delivered to the
conversion apparatus 10 through the input unit 95 corre-
sponding to the IVS illustrated in FIG. 4 can be maintained.
More specifically, in the fixed-length data illustrated in FIG.
5C, the variation selector information is stored in the area of
eight low-order bits adjacent to the area of 21 bits expressing
the character code. Therefore, the data format that the
variation selector is added just after the basic character can
be maintained. Thus, for example, the size comparison in
sorting character strings or the like including variants is
easy, and the same result as in the sorting using the data
format of UTF32 can be obtained.

In the conversion apparatus 10 of the present embodi-
ment, the information of eight bits for identifying the
variation selector is expressed by a value obtained by
subtracting “1” from the numerical value (n) of the variation
selector number. Through the execution of the process, the
conversion apparatus 10 of the present embodiment can treat
the variation selector prepared in the range of “VS17” to
“VS8256” as eight-bit information of “0x10” to “Ox{f”.

[Processing Flow]

(Variable-Length Data—Fixed-Length Data)

A process by the conversion apparatus 10 of the present
embodiment will be described with reference to a flow chart
illustrated in FIG. 6. FIG. 6 illustrates a flow chart of one
example of a process of converting variable-length data to
fixed-length data. The process illustrated in FIG. 6 is
executed by, for example, a computer program expanded in
the main storage unit 92 for execution. In the flow chart
illustrated in FIG. 6, processes of S12 to S23 are repeatedly
executed until reading of input characters is finished.

In the flow chart illustrated in FIG. 6, for example, the
processing from variable-length data to fixed-length data can
be started by input of information from the outside to the
middleware or the application program. The input from the
outside is, for example, input from the keyboard, input of
character information from the display screen, input by
Optical Code Reader (OCR), data reception from another
device through a communication module or the like, data
reading from a portable recording medium, or the like.

The conversion apparatus 10 converts the input data to
UTF32 and stores the converted data in an input operation
buffer (S11). The input data is inputted through, for example,
the input unit 94 corresponding to the IVS as described in
FIG. 4. Therefore, the input data is delivered to the conver-
sion apparatus 10 of the present embodiment as the variable-
length data with the variation selector just after the character
code (Unicode) of the basic character. The input operation
buffer is arranged in, for example, a predetermined storage
area of the main storage unit 92. The processes of S12 to S23
are executed for the input data stored in the input operation
buffer in the process of S11.

In S12 and S13, the conversion apparatus 10 reads a first
character from the input operation buffer and stores the read
character in a character processing buffer A (S12). The
character processing buffer A is arranged in, for example, a
predetermined storage area of the main storage unit 92. The
conversion apparatus 10 determines whether the reading of
the characters from the input operation buffer is finished

US 9,448,975 B2

11

(S13). The determining in S13 may be made by, for example,
detecting End of Data (EOD) or the like indicating the end
of the data.

When the reading of the characters from the input opera-
tion buffer is finished (S13, YES), the conversion apparatus
10 ends the processing illustrated in FIG. 6. On the other
hand, when the reading of the characters is not finished (S13,
NO), the conversion apparatus 10 determines whether the
first character read in the process of S12 is a basic character
or not (S14). When the first character read in the process of
S12 is not a basic character (S14, NO), the processing moves
to S23 to execute error processing.

As already described, the input data delivered to the
conversion apparatus 10 is the variable-length data in which
the variation selector is added just after the character code
(Unicode) of the basic character. Therefore, when the infor-
mation processing apparatus 90 including the conversion
apparatus 10 is in a normal state, the first character is a
character code of a basic character, and a second character
is a variation selector of the basic character. Thus, when the
character read as the first character is not a basic character
in the process of S14, the conversion apparatus 10 of the
present embodiment determines that the information pro-
cessing apparatus 90 including the conversion apparatus 10
has an error and error processing is executed in S23.

On the other hand, when the first character read in the
process of S12 is a basic character (S14, YES), the conver-
sion apparatus 10 reads a second character from the input
operation buffer and stores the read second character in a
character processing buffer B (S15). The character process-
ing buffer B is arranged in, for example, a predetermined
storage area of the main storage unit 92. The conversion
apparatus 10 determines again whether the reading of the
characters from the input operation buffer is finished (S16).

When the reading of the characters is finished (S16, YES),
the conversion apparatus 10 outputs fixed-length data from
the character processing buffer A in S17 without executing
a conversion process of the variation selector of S18 to S22.

On the other hand, when the reading of the characters is
not finished (S16, NO), the conversion apparatus 10
executes the conversion process of the variation selector of
S18 to S21. In S18, the conversion apparatus 10 determines
whether the second character read in S15 is a variation
selector. For example, the variation selectors of Chinese
character (Japanese kanji) are prepared in a range of “VS17”
to “VS8256”. For example, when the variation selectors (VS)
are expressed by Unicode, “U+E0100” corresponds to
“VS817”, and “U+EO1EF” corresponds to “VS256”. The
conversion apparatus 10 can, for example, determine
whether the second character read in S15 is expressed in the
range of “U+E0100” to “U+EO01EF”. The CPU 91 or the like
of the information processing apparatus 90 executes the
process of S18 as an example of a detecting unit.

As a result of the determination in S18, when it is
determined that the second character read in S15 is not a
variation selector (S18, NO), the conversion apparatus 10
reads the fixed-length character data from the character
processing buffer A and the processing proceeds to S15
(S22). In a process of S22, the conversion apparatus 10
copies the data of the second character stored in the char-
acter processing buffer B to the character processing buffer
A. In the copying process of S22, the conversion apparatus
10 may further initialize the character processing buffer B.

On the other hand, as a result of the determination in S18,
when it is determined that the second character read in S15
is a variation selector (S18, YES), the processing proceeds
to S19 and the conversion apparatus converts the variation

10

15

20

25

30

35

40

45

50

55

60

65

12

selector (VS) to a variation selector number (VSn). For
example, when the variation selector is “VS17”, the varia-
tion selector number “VSn” is “17”. In S19, the conversion
apparatus 10 calculates “VSn—1” from the variation selector
number “VSn” as described in FIG. 5B and the like and
converts the information to hexadecimal eight-bit informa-
tion. When the variation selector number “VSn” is “177,
“VSn-1” is “16”, which is “0x10” in the hexadecimal
eight-bit information. When the variation selector number
“VSn” is “256”, “VSn-17 is “255”, which is “Oxfl” in the
hexadecimal eight-bit information. In this way, “VSn-1" is
output as a value in the range of “16” to “255” in the process
of'S19. The process is an example of bit shift processing for
expressing the variation selector number by a small number
of bits.

In a process of S20, the conversion apparatus 10 combines
the data of the first character read in the process of S12 and
the variation selector number (VSn) converted in the process
of S19 to obtain fixed-length data. For example, in the
method 1, the conversion apparatus 10 can set 32-bit data by
shifting “VSn-1 converted in the process of S19 to the right
by 24 bits and calculate a logical sum of the data and the
four-byte basic character data stored in the character pro-
cessing buffer A in S12. The process of calculating the
logical sum is executed at, for example, the character
processing buffer A. As a result, the fixed-length data is
generated in the character processing buffer A by combining
the data of the first character read in the process of S12 and
the variation selector number (VSn) converted in the process
of S19.

In the method 2, for example, the conversion apparatus 10
shifts the four-byte basic character data stored in the char-
acter processing buffer A in S12 to the right by eight bits.
The conversion apparatus 10 can calculate a logical sum of
the basic character data shifted eight bits to the right and the
32-bit data storing “VSn—1" converted in the process of S19
in the eight low-order bits. The process of calculating the
logical sum is executed at, for example, the character
processing buffer A. As a result, as in the method 1, the
fixed-length data is generated in the character processing
buffer A by combining the data of the first character read in
the process of S12 and the variation selector number (VSn)
converted in the process of S19.

In the process of S21, the conversion apparatus 10 outputs
the fixed-length data generated in the process of S19 from
the character processing buffer A. The processing proceeds
to S12 and the conversion apparatus 10 repeats the processes
of S12 to S23 until the character data stored in the input
operation buffer is finished.

In the process illustrated in FIG. 6, the conversion appa-
ratus 10 may include, for example, a character counter or the
like. The character counter counts the number of characters.
The character counter appropriately performs initialization
and addition according to the process of the input unit 94.

The process of S11 executed by the conversion apparatus
10 is an example of obtaining character data of a variable-
length character code including an identification code of a
character and a variant identification code for identifying a
variant of the character, wherein the variable-length char-
acter code has a code length according to the character. The
CPU 91 or the like of the information processing apparatus
90 executes the process of S11 as an example of an obtaining
unit configured to character data of a variable-length char-
acter code including an identification code of a character and
a variant identification code for identifying a variant of the
character, wherein the variable-length character code has a
code length according to the character.

US 9,448,975 B2

13

The process of S19 and S20 executed by the conversion
apparatus 10 is an example of converting the glyph variant
information to extended expression data that includes a basic
character associated with the glyph variant information and
the variation information and that can be converted to the
basic character by specific bit arithmetic processing. The
CPU 91 or the like of the information processing apparatus
90 executes the processes of S19 and S20 as an example of
a converting unit configured to convert the glyph variant
information to extended expression data that includes a basic
character associated with the glyph variant information and
the glyph variant information and that can be converted to
the basic character by specific bit arithmetic processing.

The process of S21 executed by the conversion apparatus
10 is an example of delivering. The CPU 91 or the like of the
information processing apparatus 90 executes the process of
S21 as an example of a delivering unit.

(Fixed-Length Data— Variable-Length Data)

A process of converting fixed length data to variable-
length data by the conversion apparatus 10 of the present
embodiment will be described with reference to a flow chart
illustrated in FIG. 7. FIG. 7 illustrates a flow chart of a
conversion process. The process illustrated in FIG. 7 is
executed by, for example, a computer program expanded in
the main storage unit 92 to allow execution. In the flow chart
illustrated in FIG. 7, processes S31 to S39 are repeatedly
executed until reading of characters of fixed-length data is
finished.

The fixed-length data includes, for example, the 21-bit
information expressing the basic character and the eight-bit
information expressing the variation selector as described in
FIG. 6. In the process of converting fixed length to variable-
length data as illustrated in FIG. 7, the conversion apparatus
10 extracts the information from the fixed-length data to
generate and output variable-length data corresponding to
the extracted information.

In the flow chart illustrated in FIG. 7, the start of the
process from the fixed-length data to the variable-length data
can be, for example, output of information from the middle-
ware or the application program to the outside. The output
to the outside is, for example, output to a display device, a
printer, or the like, transmission of information to another
device through a communication module, or the like.

The conversion apparatus 10 reads a first character of the
fixed-length data and stores the first character in a character
processing buffer W (S31). As a result of the process of S31,
the fixed-length data of the first character stored in the
character processing buffer W includes the character code of
the basic character and the variation selector. The character
processing buffer W is arranged in, for example, a prede-
termined storage area of the main storage unit 92. In the
following description, each buffer is arranged in a predeter-
mined storage area of the main storage unit 92. The process
of S31 executed by the conversion apparatus 10 is an
example of a step of obtaining extended expression data.
The CPU 91 or the like of the information processing
apparatus 90 executes the process of S31 as an example of
means for obtaining extended expression data.

In the process of S32, the conversion apparatus 10 deter-
mines whether reading of the characters is finished. When
the reading of the characters is finished (S32, YES), the
conversion apparatus 10 converts data in an output operation
buffer to UTF8 or UTF18 and stores the data in an output
buffer (S33). After the execution of the process of S33, the
conversion apparatus 10 ends the process illustrated in
FIG. 7.

20

40

45

55

14

On the other hand, when the reading of the characters is
not finished (S32, NO), the conversion apparatus 10 extracts
a basic character as a first character of variable-length data
from the fixed-length data stored in the character processing
buffer W (S34).

The conversion apparatus 10 calculates, for example, a
logical product (AND) of the data stored in the character
processing buffer W and the 32-bit data indicated by
“Ox00ffftf™” and stores the obtained processing result in the
character processing buffer A. As a result of the process, the
conversion apparatus 10 can extract, for example, the char-
acter data of the basic character from the fixed-length data
converted in the method 1.

The conversion apparatus 10 calculates, for example, a
logical product (AND) of the data stored in the character
processing buffer W and the 32-bit data indicated by
“OxfHfff00” and stores the obtained processing result in the
character processing buffer A. The conversion apparatus 10
shifts the data stored in the character processing buffer A
eight bits to the left. As a result of the process, the conver-
sion apparatus 10 can, for example, extract the character
data of the basic character from the fixed-length data con-
verted in the method 2.

Next, the conversion apparatus 10 extracts data related to
the variation selector to be added to the basic character, from
the fixed-length data stored in the character processing
buffer W (S35). The data related to the variation selector is,
for example, “VSn-1” obtained by subtracting “1” from the
variation selector number “VSn”.

The conversion apparatus 10 calculates, for example, a
logical product (AND) of the data stored in the character
processing buffer W and the 32-bit data indicated by
“0xtf000000” and stores the obtained processing result in a
buffer VSn. As a result of the process, the conversion
apparatus 10 can, for example, extract the data related to the
variation selector from the fixed-length data converted in the
system 1.

The conversion apparatus 10 calculates, for example, a
logical product (AND) of the data stored in the character
processing buffer W and the 32-bit data indicated by
“0x000000ff” and stores the obtained processing result in
the buffer VSn. As a result of the process, the conversion
apparatus 10 can, for example, extract the data related to the
variation selector from the fixed-length data converted in the
system 2.

In the process of S36, the conversion apparatus 10 outputs
the 32-bit data (fixed length) of the basic character (first
character of variable-length data) extracted in the process of
S34 from the character processing buffer A to the output
operation buffer. After the execution of the process of S36,
the process proceeds to S37, and when a predetermined
condition is satisfied (S37, YES), the conversion apparatus
10 executes a process of conversion to variation selector of
S38 and S39.

In the process of S37, the conversion apparatus 10 deter-
mines whether there is a variation selector. For example,
when there is a variation selector, “1” is subtracted from
“VSn” that is the variation selector number, and “VSn-1"is
stored in the buffer VSn, for example. Here, “VSn-1"is a
value in a range of 16 to 255 (“0x10” to “Oxfl) as described
in FIG. 6. Therefore, in the process of S37, the conversion
apparatus 10 can determine that there is no variation selector
when the data stored in the buffer VSn in the process of S35
is “0x0”. The conversion apparatus 10 may determine that
there is a variation selector when the data stored in the buffer
VSn in the process of S35 is not “0x0”.

US 9,448,975 B2

15

As a result of the determination of the process of S37,
when there is no variation selector (837, NO), the process
proceeds to S31 and the conversion apparatus 10 repeats the
processes of S31 to S39. On the other hand, as a result of the
determination of the process of S37, when there is a varia-
tion selector (S37, YES), the conversion apparatus 10 con-
verts the variation selector number (VSn) to a character
based on the value stored in the buffer VSn (S38). The
converted variation selector number (VSn) is stored in the
character processing buffer B.

In the process of S38, the conversion apparatus 10 adds
“1” after shifting the data of the buffer VSn 24 bits to the left
and stores the data in the character processing buffer B, for
example. As a result of the process, the conversion apparatus
10 can, for example, extract the variation selector number
(VSn) from the fixed-length data converted in the method 1.

The conversion apparatus 10, for example, adds “1” to the
data of the buffer VSn and stores the data in the character
processing buffer B. As a result of the process, the conver-
sion apparatus 10 can, for example, extract the variation
selector number (VSn) from the fixed-length data converted
in the method 2.

The conversion apparatus 10 further converts the varia-
tion selector number (VSn) extracted to the character pro-
cessing buffer B to character data and stores the character
data again in the character processing buffer B. As a result,
character data expressing the variation selector, such as
“U+E0100”, is stored in the character processing buffer B,
for example. “U+E0100” is a character code corresponding
to the variation selector number (VS17).

In the process of S39, the conversion apparatus 10 outputs
the character data expressing the variation selector stored in
the character processing buffer B to the output operation
buffer and moves to S31. The conversion apparatus 10 can
again repeat the processes of S31 to S39 to convert the data
related to the basic character and the variation selector
included in the fixed-length data to variable-length data
expressed by “basic character+variation selector”. The char-
acter data output to the output operation buffer is stored in
the output buffer on the condition that it is determined that
the reading of the characters is finished in S32.

In the process illustrated in FIG. 6, the conversion appa-
ratus 10 may include, for example, a character counter or the
like. In the process illustrated in FIG. 6, the conversion
apparatus 10 may include, for example, a character counter
or the like. The character counter counts the number of
characters. The character counter appropriately performs
initialization and addition according to the process of the
input unit 94.

The process of S34 to S38 executed by the conversion
apparatus 10 is an example of converting to a character data
string in a standard expression. The CPU 91 or the like of the
information processing apparatus 90 executes the process of
S34 to S38 as an example of a conversion unit to a character
data string in a standard expression.

More specifically, the fixed-length character code gener-
ated by the conversion apparatus 10 is a fixed-length char-
acter code that can restore the original variable-length
character code including the identification code of the char-
acter and the variant identification code of the character. The
conversion apparatus 10 converts the character data from the
variable-length character code to the fixed-length character
code that can restore the variable-length character code. As
a result of the process, the conversion apparatus 10 can treat,

10

30

40

45

16

in a fixed-length character code, the character data of the
variable-length character code including the variant.

Example of Operation
Compiler

FIG. 8A illustrates an explanatory view of a case in which
the conversion apparatus 10 of the present embodiment is
incorporated into a compiler. In the explanatory view illus-
trated in FIG. 8A, a source program file 80a is, for example,
aprogram including character codes expressed by UTF8 and
UTF16. A compiler 805 includes the conversion apparatus
10 of the present embodiment. The compiler 805 converts a
source code of the source program file 80a to generate an
application (object program) 80¢ written in an object code
executable by a computer. The object program 80c is, for
example, an application executable by the information pro-
cessing apparatus 90.

In the source program file 80a of FIG. 8A, data declara-
tion treated in the program is performed, an initial value is
set, environment variables such as a file name are defined,
and a file record and the like are defined. The data decla-
ration includes, for example, a character string “NNNN”
expressed by UTF8 and UTF16. In the source program file
80a, various processes regarding input and output of data,
processes regarding data processing, cooperation (for
example, data input and output) with other software, and the
like are written. An example of the processes regarding input
and output of data includes a process of inputting external
data written by “ACCEPT IN-NAME” or the like.

The compiler 805 illustrated in FIG. 8A reserves a data
area at the execution of compile processing, according to the
file definition, the file record definition, and the like of the
source program file 80a. The reserved data area is a fixed-
length data area. The compiler 805 executes a translation
process to an object code executable by the computer
according to the source code regarding various processes of
the source program file 80a. In the translation process, a
fixed-length data area is reserved according to the source
code regarding various processes, and a translation process
is executed based on the fixed-length data area.

The conversion apparatus 10 incorporated into the com-
piler 805 executes the following conversion process of
character data at the execution of the compile processing.
For example, the conversion apparatus 10 of the compiler
804 converts the variable-length character string “NNNN”
or the like expressed by UTF8, UTF16, or the like included
in the data declaration or the like of the source program file
80a to UTF32 and stores it in the input operation buffer
(FIG. 6, S11). The conversion apparatus 10 executes a
process of reading a first character in the input operation
buffer and stores the character in the character processing
buffer A (FIG. 6, S12). If a predetermined condition is
satisfied (FIG. 6, S13, NO, S14, YES), the conversion
apparatus 10 reads a second character and stores the char-
acter in the character processing buffer B (FIG. 6, S16).
When the second character is not a variation selector (VS),
the conversion apparatus 10 outputs the first character stored
in the character processing buffer A to the object program
80c. The conversion apparatus 10 copies the character
processing buffer B to the character processing buffer A and
executes the initialization process of the character process-
ing buffer B (FIG. 6, S18, NO—S22).

At the execution of the compile processing, when the
second character is a variation selector (VS), the conversion
apparatus 10 converts the variation selector (VS) expressed

US 9,448,975 B2

17

by Unicode to a variation selector number (VSn) (FIG. 6,
S18, YES—S19). The conversion apparatus 10 combines
the basic character of the first character stored in the
character processing buffer A and the variation selector
number (VSn) to obtain fixed-length data and outputs the
combined fixed-length data to the object program 80c¢ (FIG.
6, S20-S21).

The compiler 805 illustrated in FIG. 8A, for example,
associates a call function for calling out the compiler process
as a RUNTIME system according to the source code regard-
ing the process of inputting external data such as “ACCEPT
IN-NAME”.

As aresult of the process by the compiler 805, a character
string such as “NNNN” declared in the source program file
80a is set as an initial value of fixed-length data in the object
program 80c. A variable area and a fixed-length data area
according to the file definition and the like of the source
program file 80a are set in the object program 80c. A
fixed-length data area and a process based on the fixed-
length data area are incorporated into an execution area
(business block) of the object program.

FIG. 8B is a diagram explaining execution of the object
program 80c¢ of FIG. 8A. In FIG. 8B, a compiler operation
system 804 is a RUNTIME system called out by “ACCEPT
IN-NAME”. The object program 80c illustrated in FIG. 8B
is executed by, for example, the information processing
apparatus 90.

In the explanatory view illustrated in FIG. 8B, for
example, character data input expressed by UTF8 or UTF16
is performed through the input unit 95 included in the
information processing apparatus 90. The object program
80c¢ receives the input character data through an external
data input process. As a result of the execution of the
external data input process of the object program 80c, the
call function and the like associated with “ACCEPT IN-
NAME” are called out, and the compiler operation system
804 is activated. In the activated compiler operation system
804, the process of the compiler 805 described in FIG. 8A
is executed.

The conversion apparatus 10 incorporated into the com-
piler 806 converts the variable-length character data
expressed by UTF8, UTF16, or the like to UTF32 and stores
the data in the input operation buffer (FIG. 6, S11). The
conversion apparatus 10 executes the processes of S12 to
S23 of FIG. 6 to convert the variable-length character data
input through the input unit 95 to fixed-length data.

The object program 80c¢ executes predetermined data
processing and cooperative processing with other software
based on the converted fixed-length data. For example,
through the execution of the object program 80c, the infor-
mation processing apparatus 90 writes the fixed-length data
in a file and stores the file including the fixed-length data in
the auxiliary storage unit 93. The information processing
apparatus 90 that executes the object program 80c¢ executes
an input and output process based on the fixed-length data
area in the cooperative processing with other software.

As a result of the data processing, when, for example, the
data is to be output to the output unit 96 included in the
information processing apparatus 90, the compiler 805 con-
verts the fixed-length data to variable-length data and out-
puts the data to the object program 80c. The conversion
apparatus 10 incorporated into the compiler 805 executes the
following conversion process regarding character data.

For example, the conversion apparatus 10 of the compiler
805 reads the first character of the fixed-length data and
stores the first character in the character processing buffer W
(FIG. 7, S31). When a predetermined condition is satisfied,

10

15

20

25

30

35

40

45

50

55

60

65

18

the conversion apparatus 10 extracts the basic character as
the first character of the variable-length data from the
fixed-length data stored in the character processing buffer W
and stores the extracted basic character in the character
processing buffer A (FIG. 7, S34). The conversion apparatus
10 extracts the data of the variation selector to be added to
the basic character from the fixed-length data stored in the
character processing buffer W and stores the data in the
buffer VSn (FIG. 7, S35).

The conversion apparatus 10 outputs the fixed-length data
(USC4) of the first character from the buffer VSn to the
output operation buffer (FIG. 7, S36) and converts the
variation selector number (VSn) stored in the buffer VSn to
character data when there is a variation selector. The con-
verted character data is stored in the character processing
buffer B (FIG. 7, S38). The conversion apparatus 10 outputs
the character data (USC4) of the variation selector stored in
the character processing buffer B to the output operation
buffer (FIG. 7, S39).

The basic character data of the first character output to the
output operation buffer and the character data expressing the
variation selector are converted to UTF8 or UTF16 and
stored in the output buffer when reading of the characters of
the fixed-length data is finished (FIG. 7, S33). The character
data stored in the output buffer and converted to UTFS8 or
UTF16 is output to a data output process of the object
program 80c.

In the data output process of the object program 80c, the
variable-length character data converted to UTF8 or UTF16
is output on the display screen of the output unit 96. When
the basic character includes a variation selector, the variation
selector is added just after the basic character, and the
character data is output.

(Middleware)

FIG. 9 illustrates an explanatory view of a case in which
the conversion apparatus 10 of the present embodiment is
incorporated into middleware. The case of FIG. 9 is a case
in which, for example, the developer or the like of a business
application that treats characters calls out and uses the
conversion function of the conversion apparatus 10 incor-
porated into the middleware of the information processing
apparatus 90.

An application 80e of FIG. 9 is, for example, an appli-
cation program designed by the developer or the like. The
developer or the like, for example, inputs character data
expressed by UTF8 or UTF16 through the input unit 95
included in the information processing apparatus 90. In the
application 80e, the conversion apparatus 10 incorporated
into the middleware is associated, as a converter function,
with an external data input process. In the external data input
process illustrated in FIG. 9, “CONVERTER FUNCTION
(&buffer, &fixed_buffer);” associates, as a converter func-
tion, the conversion apparatus 10 incorporated into the
middleware.

In the application 80e, the conversion apparatus 10 called
out by a request of the external data input process converts
the variable-length character data expressed by UTFS,
UTF16, or the like to UTF32 and stores the data in the input
operation buffer (FIG. 6, S11). The conversion apparatus 10
executes the processes of S12 to S23 of FIG. 6 to convert the
variable-length character data input through the input unit 95
to fixed-length data. The converted fixed-length data is
output to the external data input process of the application
80e.

In the application 80e, for example, the data processing
and the cooperative processing with other software are
designed based on a fixed-length data area. When variable-

US 9,448,975 B2

19

length data of input and output is converted to fixed-length
data in the cooperative processing with other software, the
developer or the like may associate, as a call function, the
compiler operation system 80d illustrated in FIG. 8B with
the cooperative processing, for example.

In the application 80e, when the character data processed
by the fixed-length data is to be output to the output unit 96,
the conversion apparatus 10 incorporated into the middle-
ware is associated, as a converter function, with an external
data output process. In the external data output process
illustrated in FIG. 9, “CONVERTER FUNCTION (&fixed_
buffer, &customer_name);” associates, as a converter func-
tion, the conversion apparatus 10 incorporated into the
middleware.

In the application 80e, the conversion apparatus 10 called
out by a request of the external data output process reads the
first character of the fixed-length data and stores the first
character in the character processing buffer W (FIG. 7, S31).
The conversion apparatus 10 executes the processes S32 to
S39 of FIG. 7 to convert the character data processed as
fixed-length data to variable-length character data. The
converted variable-length data is output to the external data
output process of the application 80e.

In the application 80e, the converted variable-length char-
acter data is output to the output unit 96 based on a
predetermined function. In the external data processing
illustrated in FIG. 9, the converted variable-length character
data is output to the output unit 96 based on a function such
as “printf (“customer name%s \n”, &customer_name);”.

As described, the conversion apparatus 10 of the present
embodiment can convert character data of two to eight bytes
including a basic character and a variation selector to
fixed-length data including data of the character code of the
basic character and the variation selector. Therefore, internal
processing using the converted fixed-length data is possible
in a program handling Japanese of n characters, DB defini-
tion, form definition, and the like. As a result, the function
of the conversion apparatus 10 of the present embodiment
can be incorporated into middleware, a compiler, or the like
to rebuild, without major reviews, the business system and
the business application designed based on fixed-length
Japanese character strings.

Although the input data is converted to UTF32 and stored
in the input operation buffer in S11 of FIG. 6, the input data
may be stored in a format of a basic character expressed by
UTF8 or UTF16 or in a format of the basic character
provided with a variation selector.

<<Computer-Readable Recording Medium>>

A program for causing a computer or other machines or
devices (hereinafter, “computer or the like”) to implement
any of the functions can be recorded in a recording medium
readable by the computer or the like. The functions can be
provided by causing the computer or the like to read and
execute the program of the recording medium.

The recording medium readable by the computer or the
like is a recording medium that can accumulate information
of data, programs, and the like by electrical, magnetic,
optical, mechanical, or chemical actions and that can be read
from the computer or the like. Examples of the recording
medium that can be removed from the computer or the like
include a flexible disk, a magneto-optical disk, a CD-ROM,
a CD-R/W, a DVD, a blu-ray disk, a DAT, an 8 mm tape, a
memory card such a flash memory, and the like. Examples
of the recording medium fixed to the computer or the like
include a hard disk, a ROM, and the like.

All examples and conditional language recited herein are
intended for pedagogical purposes to aid the reader in

10

20

25

30

35

40

45

50

55

60

20

understanding the invention and the concepts contributed by
the inventor to furthering the art, and are to be construed as
being without limitation to such specifically recited
examples and conditions, nor does the organization of such
examples in the specification relate to a showing of the
superiority and inferiority of the invention. Although the
embodiments of the present invention have been described
in detail, it should be understood that the various changes,
substitutions, and alterations could be made hereto without
departing from the spirit and scope of the invention.

What is claimed is:

1. A character data processing method executed by a
computer, the method comprising:

detecting glyph variant information from an input char-

acter data string; and

converting detected glyph variant information to extended

expression data, the extended expression data including
basic character data and the detected glyph variant
information, the basic character data being associated
with the detected glyph variant information in the input
character string,

wherein the extended expression data can be converted to

the basic character data by specific bit arithmetic pro-
cessing,

the method further comprising:

delivering the extended expression data obtained by the

converting to a processing unit to perform processing
of the extended expression data;

obtaining the extended expression data that the processing

of the processing unit has been performed; and

converting the obtained extended expression data to a

character data string of a standard expression including
glyph variant information and a basic character data
associated with the glyph variant information.

2. The character data processing method according to
claim 1, wherein the extended expression data includes a
value obtained by shifting of predetermined bits of a variant
identification code value included in the glyph variant
information.

3. An information processing method executed by a
computer, the method comprising: obtaining character data
of a variable-length character code including an identifica-
tion code of a character and a variant identification code for
identifying a variant of the character, the variable-length
character code having a code length corresponding to the
character; and generating, based on the identification code of
the character and the variant identification code of the
character, a fixed-length character code that can restore the
identification code of the character and the variant identifi-
cation code to convert the character data of the variable-
length character code to character data of the fixed-length
code.

4. A non-transitory computer-readable recording medium
storing therein a program that causes a computer to execute
a process comprising:

detecting glyph variant information from an input char-

acter data string; and

converting detected glyph variant information to extended

expression data, the extended expression data including
basic character data and the detected glyph variant
information, the basic character data being associated
with the detected glyph variant information in the input
character string,

wherein the extended expression data can be converted to

the basic character data by specific bit arithmetic pro-
cessing,

US 9,448,975 B2

21

the program causing the computer to execute the process

further comprising:

delivering the extended expression data obtained by the

converting to a processing unit to perform processing
of the extended expression data;

obtaining the extended expression data that the processing

of the processing unit has been performed; and

converting the obtained extended expression data to a

character data string of a standard expression including
glyph variant information and basic character data
associated with the glyph variant information.

5. The non-transitory computer-readable recording
medium according to claim 4, wherein the extended expres-
sion data includes a value obtained by shifting of predeter-
mined bits of a variant identification code value included in
the glyph variant information.

6. An information processing apparatus, comprising a
memory storing executable instructions; and a processor
connected to the memory and configured to execute the
instructions, execution of the instructions causes the proces-
sor to:

detect glyph variant information from an input character

data string;

10

15

20

22

convert detected glyph variant information to extended
expression data including basic character data and the
detected glyph variant information, the basic character
data being associated with the detected glyph variant
information in the input character data string, wherein
the extended expression data can be converted to the
basic character data by specific bit arithmetic process-
ing;

deliver the extended expression data obtained by the

converting unit to a processing unit to perform pro-
cessing of the extended expression data;

obtain the extended expression data that the processing of

the processing unit has been performed; and

convert the obtained extended expression data to a char-

acter data string of a standard expression including
glyph variant information and basic character data
associated with the glyph variant information.

7. The information processing apparatus according to
claim 6, wherein the extended expression data includes a
value obtained by shifting of predetermined bits of a variant
identification code value included in the glyph variant
information.

